Gartner развеивает мифы о Больших Данных
В недавней аналитической записке Gartner перечислен ряд распространенных среди ИТ-руководителей мифов относительно Больших Данных и приводятся их опровержения
В недавней аналитической записке Gartner перечислен ряд распространенных среди ИТ-руководителей мифов относительно Больших Данных и приводятся их опровержения.
Интерес к технологиям Больших Данных рекордно высок: в 73% организаций, опрошенных аналитиками Gartner в этом году, уже инвестируют в соответствующие проекты или собираются. Но большинство таких инициатив пока еще на самых ранних стадиях, и только 13% опрошенных уже внедрили подобные решения. Сложнее всего — определить, как извлекать доход из Больших Данных, решить, с чего начать. Во многих организациях застревают на пилотной стадии, поскольку не могут привязать новую технологию к конкретным бизнес-процессам.
Некоторые ИТ-руководители считают, что мелкие огрехи в данных не влияют на общие результаты анализа огромных объемов.
Когда данных много, каждая ошибка в отдельности действительно меньше влияет на результат, отмечают аналитики, но и самих ошибок становится больше. Кроме того, большая часть анализируемых данных — внешние, неизвестной структуры или происхождения, поэтому вероятность ошибок растет. Таким образом, в мире Больших Данных качество на самом деле гораздо важнее.
Большие Данные обещают возможность обработки данных в оригинальном формате с автоматическим формированием схемы по мере считывания. Считается, что это позволит анализировать информацию из одних и тех же источников с помощью нескольких моделей данных. Многие полагают, что это также даст возможность конечным пользователям самим интерпретировать любой набор данных по своему усмотрению.
В реальности большинству пользователей часто нужен традиционный способ с готовой схемой, когда данные форматируются соответствующим образом, и имеются соглашения об уровне целостности информации и о том, как она должна соотноситься со сценарием использования.
Многие администраторы систем управления информацией считают, что нет смысла тратить время на создание хранилища данных, принимая во внимание, что сложные аналитические системы пользуются новыми типами данных.
На самом деле во многих системах сложной аналитики используется информация из хранилища данных. В других случаях новые типы данных нужно дополнительно готовить к анализу в системах обработки Больших Данных; приходится принимать решения о пригодности данных, принципах агрегации и необходимом уровне качества — такая подготовка может происходить вне хранилища.
В реальности поставщики вводят заказчиков в заблуждение, позиционируя озера данных (data lake) как замену хранилищам или как критически важные элементы аналитической инфраструктуры. Основополагающим технологиям озер данных не хватает зрелости и широты функциональности, присущей хранилищам. Поэтому руководителям, отвечающим за управление данными, стоит подождать, пока озера достигнут того же уровня развития, считают в Gartner.